Закон независимое наследование признаков

Третий закон Менделя. Условия независимого наследования и комбинирования неаллельных генов. Цитологические основы и универсальность законов Менделя. Менделирующие признаки человека.

Третий закон Менделя (независимого наследования признаков) при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Закон проявляется, как правило, для тех пар признаков, гены которых находятся вне гомологичных хромосомах. Если обозначить буквой и число аллельных пар в негомологичных хромосомах, то число фенотипических классов будет определяться формулой 2n, а число генотипических классов —, 3n. При неполном доминировании количество фенотипических и генотипических классов совпадает.

Условия независимого наследования и комбинирования неаллельных генов.

Изучая расщепление при дигибридном скрещивании, Мендель обнаружил, что признаки наследуются независимо друг от друга. Эта закономерность, известная как правило независимого комбинирования признаков, формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся двумя (или более) парами альтернативных признаков, во втором поколении F2) наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их, расположены в различных гомологичных хромосомах. Это возможно, так как при мейозе распределение (комбинирование) хромосом в половых клетках при их созревании идет независимо, что может привести к появлению потомков, несущих признаки в сочетаниях, не свойственных родительским и прародительским особям. Вступают в брак дигетерозиготы по окраске глаз и способности лучше владеть правой рукой (АаВb). При формировании гамет аллель А может оказаться в одной гамете как с аллелем В, так и с аллелем b. Точно так же аллель а может попасть в одну гамету либо с аллелем В, либо с аллелем b. Следовательно, у дигетерозиготной особи образуются четыре возможные комбинации генов в гаметах: АВ, Аb, аВ, аb. Всех типов гамет будет поровну (по 25).

Это несложно объяснить поведением хромосом при мейозе. Негомологичные хромосомы при мейозе могут комбинироваться в любых сочетаниях, поэтому хромосома, несущая аллель А,равновероятно может отойти в гамету как с хромосомой, несущей аллель В так и с хромосомой, несущей аллель b. Точно так же хромосома, несущая аллель а, может комбинироваться как с хромосомой, несущей аллель В, так и с хромосомой, несущей аллель b. Итак, дигетерозиготная особь образует 4 типа гамет. Естественно, что при скрещивании этих гетерозиготных особей любая из четырех типов гамет одного родителя может быть оплодотворена любой из четырех типов гамет, сформированных другим родителем, т. е. возможны 16 комбинаций. Такое же число комбинаций следует ожидать по законам комбинаторики.

При подсчете фенотипов, записанных на решетке Пеннета, оказывается, что из 16 возможных комбинаций во втором поколении в 9 реализуются два доминантных признака (АВ, в нашем примере кареглазые правши), в 3первый признак доминантный, второй рецессивный (Аb, в нашем примере кареглазые левши), еще в 3 первый признак рецессивный, второй доминантный (аВ, т. е. голубоглазые правши), а в одной оба признака рецессивные (аb, в данном случае голубоглазый левша). Произошло расщепление по фенотипу в соотношении 9:3:3:1.

Если при дигнбридном скрещивании во втором поколении последовательно провести подсчет полученных особей по каждому признаку в отдельности до результат получится такой же, как при моногчбридном скрещивании, т.e. 3 : 1.

В нашем примере при расщеплении по окраске глаз получается соотношение: кареглазых 12/16, голубоглазых 4/16, по другому признаку правшей 12/16, левшей 4/16, т. е. известное соотношение 3:1.

Дигетерозигота образует четыре типа гамет, поэтому при скрещивании с рецессивной гомозиготой наблюдается четыре типа потомков, при этом расщепление как по фенотипу, так и по генотипу происходит в соотношении 1:1:1:1.

При подсчете фенотипов, полученных в этом случае, наблюдается расщепление в соотношении 27 : 9 : 9 : 9: :3 : 3 : 3 : 1. Это следствие того, что принятые нами во внимание признаки: способность лучше владеть правой рукой, окраска глаз и резус-фактор контролируются генами, локализованными в разных хромосомах, и вероятность встречи хромосомы, несущей ген А, с хромосомой, несущей ген В или R, зависит полностью от случайности, так как та же хромосома с геном А в равной степени могла встретиться с хромосомой, несущей ген b или r.

В более общей форме, при любых скрещиваниях, расщепление по фенотипу происходит по формуле (3 1) n , где п число пар признаков, принятых во внимание при скрещивании.

Цитологические основы и универсальность законов Менделя.

1) парности хромосом (парности генов, обусловливающих возможность развития какого-либо признака)

2) особенностях мейоза (процессах, происходящих в мейозе, которые обеспечивают независимое расхождение хромосом с находящимися на них генами к разным пблюсам клетки, а затем и в разные гаметы)

3) особенностях процесса оплодотворения (случайного комбинирования хромосом, несущих по одному гену из каждой аллельной пары)

Закон независимого наследования признаков

Закон независимого наследования признаков

Закон независимого наследования каждая пара признаков наследуется независимо от других пар, так что происходит расщепление 3:1 по каждой паре (как и при моногибридном скрещивании). Пример: при скрещивании растений гороха с желтыми и гладкими семенами (доминантные признаки) с растениями с зелеными и морщинистыми семенами (рецессивные признаки) во втором поколении происходит расщепление в соотношении 3:1 (три части желтых и одна часть зеленых семян) и 3:1 (три части гладких и одна часть морщинистых семян). Расщепление по одному признаку идет независимо от расщепления по другому.

Wikimedia Foundation . 2010 .

Смотреть что такое Закон независимого наследования признаков в других словарях:

закон независимого наследования признаков nepriklausomo poymi paveldjimo dsnis statusas T sritis augalininkyst apibrtis Treiasis Mendelio dsnis, kuriuo skelbiama, kad genai, lemiantys vairius poymius ir esantys skirtingose chromosomose, paveldimi nepriklausomai vienas nuo kito ems kio augal selekcijos ir sklininkysts termin odynas

закон независимого комбинирования признаков nepriklausomo poymi paveldjimo dsnis statusas T sritis augalininkyst apibrtis Treiasis Mendelio dsnis, kuriuo skelbiama, kad genai, lemiantys vairius poymius ir esantys skirtingose chromosomose, paveldimi nepriklausomai vienas nuo kito ems kio augal selekcijos ir sklininkysts termin odynas

Закон доминирования признаков Законы Менделя набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам, эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона,…, Википедия

Закон единообразия гибридов первого поколения Законы Менделя набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам, эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона,…, Википедия

Закон единообразия гибридов Законы Менделя набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам, эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона,…, Википедия

Закон расщепления Законы Менделя набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам, эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона,…, Википедия

третий закон Менделя nepriklausomo poymi paveldjimo dsnis statusas T sritis augalininkyst apibrtis Treiasis Mendelio dsnis, kuriuo skelbiama, kad genai, lemiantys vairius poymius ir esantys skirtingose chromosomose, paveldimi nepriklausomai vienas nuo kito ems kio augal selekcijos ir sklininkysts termin odynas

Независимое наследование признаков Закон независимого наследования каждая пара признаков наследуется независимо от других пар и дает расщепление 3:1 по каждой паре (как и при моногибридном скрещивании). Пример: при скрещивании растений гороха с желтыми и гладкими семенами…, Википедия

Менделевское расщепление Законы Менделя набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам, эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона,…, Википедия

Менделевское ращепление Законы Менделя набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам, эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона,…, Википедия

Поделиться ссылкой на выделенное Прямая ссылка:

Мы используем куки для наилучшего представления нашего сайта. Продолжая использовать данный сайт, вы соглашаетесь с этим. Хорошо

Закон независимое наследование признаков

Изучая расщепления при дигибридном скрещивании, Мендель обратил внимание на следующее обстоятельство. При скрещивании растений с желтыми гладкими (ААВВ) и зелеными морщинистыми (aabb) семенами во втором поколении появлялись новые комбинации признаков: желтые морщинистое (Aabb) и зеленые гладкие (ааВЬ), которые не встречались в исходных формах. Из этого наблюдения Мендель сделал вывод, что расщепление по каждому признаку происходит независимо от второго признака. В приведенном примере форма семян наследовалась независимо от их окраски. Эта закономерность получила название третьего закона Менделя, или закона независимого распределения генов. Третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся по двум (или более) признакам, во втором поколении наблюдаются независимое наследование и комбинирование состояний признаков, если гены, которые их определяют, расположены в разных парах хромосом. Это возможно потому, что во время мейоза распределение (комбинирования) хромосом в половых клетках при их созревании идет независимо и может привести к появлению потомства с комбинацией признаков, отличных от родительских и прародительских особей.

Для записи скрещиваний нередко используют специальные решетки, которые предложил английский генетик Пеннет 61 (решетка Пеннета). Ими удобно пользоваться при анализе полигибридных скрещиваний. Принцип построения решетки состоит в том, что сверху по горизонтали записывают гаметы отцовской особи, слева по вертикали гаметы материнской особи, в местах пересечения вероятные генотипы потомства.

Рис. 1. Решетка Пеннета

При моногибридном скрещивании исследуется наследование одного гена. В классическом моногибридном скрещивании каждый ген имеет два аллеля. Для примера мы возьмем материнский и отцовский организмы с одинаковым генотипом «Gg». В генетике, как мы уже знаем, для обозначения доминантного аллеля используются заглавные буквы, а для рецессивного строчные. Этот генотип может дать только два типа гамет, которые содержат или аллель «G» или аллель «g».

Наша решетка Пеннета будет выглядеть следующим образом:

Суммировав одинаковые генотипы в решетке Пеннета для нашего потомства мы получим следующее соотношение по генотипам: 1 (25 ) GG: 2 (50 ) GG: 1 (25 ) GG это типичное соотношение генотипов (1:02:01) для моногибридного скрещивания. Доминантный аллель будет маскировать рецессивный аллель, что означает, что организмы с генотипами «GG» и «Gg» имеют один и тот же фенотип. Например, если аллель «G» дает желтый цвет и аллель «g» дает зеленый цвет, то генотип «gg» будет иметь зеленый фенотип, а генотипы «GG» и «Gg» желтый фенотип. Суммировав значения в решетке мы будем иметь 3G (желтый фенотип) и lgg (зеленый фенотип) это типичное соотношение по фенотипам (3:1) для моногибридного скрещивания. А соответствующие вероятности для потомства будут 75G: 25gg.

При дигибридных скрещиваниях исследуется наследование двух генов. Для дигибридных скрещиваний мы можем составить решетку Пеннета только в случае, если гены наследуются независимо друг от друга это означает, что при образовании материнских и отцовских гамет в каждую из них может попасть любой аллель из одной пары вместе с любым другим из другой пары. Этот принцип независимого распределения был открыт Менделем в экспериментах по дигибридным и полигибридным скрещиваниям.

Мы имеем два гена Формы и Цвета. Для формы: «R» это доминантный аллель, определяющий гладкую форму и «w» это рецессивный аллель, который дает морщинистую форму горошин. Для цвета: «Y» это доминантный аллель, определяющий желтую окраску и «g» это рецессивный аллель дающий зеленую окраску горошин. Мужское и женское растения имеют одинаковый генотип «RwYg» (гладкие, желтые).

Сначала необходимо определить все возможные комбинации гамет, для этого также можно использовать решетку Пеннета:

Таким образом, гетерозиготные растения могут дать четыре типа гамет со всеми возможными комбинациями: RY, Rg, wY, wg. Теперь составим решетку Пеннета для генотипов:

Суммировав одинаковые генотипы в решетке Пеннета, для нашего потомства мы получим следующее соотношение и вероятности по генотипам: 1(6,25 ) RRYY 2(12,5 ) RwYY: 1(6,25 ) wwYY: 2(12,5 ) RRYg: 4(25 ) RwYg: 2(12,5 ) wwYg: 1(6,25 ) RRgg: 2(12,5 ) Rwgg: 1(6,25 ) wwgg. А так как доминантные признаки маскируют рецессивные, то соотношение и вероятности по фенотипам мы получим такие: 9(56,25 ) R-Y (гладкие, желтые): 3(18,75 ) R-gg (гладкие, зеленые): 3(18,75 ) wwY (морщинистые, желтые): 1(6,25 ) wwgg (морщинистые, зеленые). Такое соотношение по фенотипам 9:3:3:1 является типичным для дигибридного скрещивания.

Составить решетку Пеннета для скрещивания между двумя растениями гетерозиготными по трем генам будет более сложно. Вот решетка для генотипов (64 клетки).

Мы привели эти примеры для общего представления и расширения знаний по генетике проблемы решения задач находятся не в сфере нашей дисциплины основ психогенетики. Кроме того, само решение требует умения пользоваться полиномами 62 и достаточно большого количества времени.

Побиологии.рф

Закон независимого наследования признаков

закон Г. Менделя, открытый в 1865 г .: при дигибридном скрещивании у гибридов второго поколения каждая пара контрастных признаков наследуется независимо от других и дает расщепление 3:1, образуя при этом четыре фенотипические группы в соотношении 9:3:3:1. Так, у гороха образуются четыре фенотипические группы семян, характеризующиеся отношением 9:3:3:1, где 9 желтые гладкие, 3 желтые морщинистые, 3 зеленые гладкие, 1 зеленые морщинистые. (Иными словами, 12 желтых: 4 зеленых, т. е. 3:1. Аналогичная закономерность прослеживается для гладких и морщинистых семян.) Генотипов образуется 9, из них 1 доминантная гомозигота, 1 рецессивная гомозигота, 7 дигетерозигот. Закон справедлив лишь в тех случаях, когда анализируемые признаки не сцеплены друг с другом, т. е. находятся в разных хромосомах. По генотипу расщепление идет по формуле: 1:2:2:1:4:1:2:2:1.

Источник: Т. Л. Богданова Пособие для поступающих в вузы

Биология

Третий закон Менделя это закон независимого распределения признаков. Под этим подразумевается, что каждый ген одной аллельной пары может оказаться в гамете с любым другим геном из другой аллельной пары. Например, если организм гетерозиготен по двум исследуемым генам (AaBb), то он образует следующие типы гамет: AB, Ab, aB, ab. То есть, например, ген A может оказаться в одной гамете как с геном B, так и b. Это же касается и других генов (их произвольного сочетания с неаллельными генами).

Третий закон Менделя проявляется уже при дигибридном скрещивании (тем более при тригибридном и полигибридном), когда чистые линии различаются по двум исследуемым признакам. Мендель скрестил сорт гороха с желтыми гладкими семена с сортом, у которого были зеленые морщинистые семена, и получил исключительно желтые гладкие семена F1. Далее он вырастил из семян растения F1, позволил им самоопыляться и получил семена F2. И здесь он наблюдал расщепление: появились растения как с зелеными, так и морщинистыми семенами. Самое удивительное было то, что среди гибридов второго поколения оказались не только растения с желтыми гладкими и зелеными морщинистыми семенами. Также были желтые морщинистые и зеленые гладкие семена, т. е. произошла рекомбинация признаков, и получились такие комбинации, которые не встречались у исходных родительских форм.

Анализируя количественное соотношение разных семян F2, Мендель обнаружил следующее:

Если рассматривать каждый признак по отдельности, то он расщеплялся в отношении 3:1, как при моногибридном скрещивании. То есть на каждые три желтых семени приходилось одно зеленое, а на каждые 3 гладких 1 морщинистое.

Появились растения с новыми комбинациями признаков.

Соотношение фенотипов было 9 : 3 : 3 : 1, где на девять желтых гладких семян гороха приходилось три желтых морщинистых, три зеленых гладких и одно зеленое морщинистое.

Третий закон Менделя хорошо иллюстрирует решетка Пеннета. Здесь в заголовках строк и столбцов пишутся возможные гаметы родителей (в данном случае гибридов первого поколения). Вероятность образования каждого типа гаметы составляет . Также равновероятно различное их объединение в одну зиготу.

Мы видим, что образуется четыре фенотипа, два из которых ранее не существовали. Соотношение фенотипов 9 : 3 : 3 : 1. Количество разных генотипов и их соотношение более сложное:

Получается 9 разных генотипов. Их соотношение: 4 : 2 : 2 : 2 : 2 : 1 : 1 : 1 : 1. При этом гетерозиготы встречаются чаще, а гомозиготы реже.

Если вернуться к тому, что каждый признак наследуется независимо, и по каждому наблюдается расщепление 3:1, то можно вычислить вероятность фенотипов по двум признакам разных аллелей, умножая вероятность проявления каждого аллеля (т. е. не обязательно пользоваться решеткой Пеннета). Так, вероятность гладких желтых семян будет равна = 9/16, гладких зеленых = 3/16, морщинистых желтых = 3/16, морщинистых зеленых = 1/16. Таким образом, мы получаем то же соотношение фенотипов: 9:3:3:1.

Объясняется третий закон Менделя независимым расхождением гомологичных хромосом разных пар при первом делении мейоза. Хромосома, содержащая ген A, может с равной вероятностью уйти в одну клетку как с хромосомой, содержащей ген B, так и с хромосомой, содержащей ген b. Хромосома с геном A никак не привязана к хромосоме с геном B, хотя они обе и были унаследованы от одного родителя. Можно сказать, что в результате мейоза хромосомы перемешиваются. Количество различных их сочетаний вычисляется по формуле 2 n , где n это количество хромосом гаплоидного набора. Так, если у вида три пары хромосом, то количество различных их комбинаций будет равно 8 (2 3 ).

Когда не действует закон независимого наследования признаков

Третий закон Менделя, или закон независимого наследования признаков, действует только для генов, локализованных в разных хромосомах или расположенных в одной хромосоме, но достаточно далеко друг от друга.

В основном если гены находятся в одной хромосоме, то они наследуются совместно, т. е. проявляют сцепление между собой, и закон независимого наследования признаков уже не действует.

Например, если бы гены, отвечающие за окраску и форму семян гороха находились в одной хромосоме, то гибриды первого поколения могли бы образовывать гаметы только двух типов (AB и ab), так как в процессе мейоза независимо друг от друга расходятся родительские хромосомы, но не отдельные гены. В таком случае во втором поколении было бы расщепление 3:1 (три желтых гладких на одно зеленое морщинистое).

Однако не так все просто. Из-за существования в природе конъюгации (сближения) хромосом и кроссинговера (обмена участками хромосом) рекомбинируются и гены находящиеся в гомологичных хромосомах. Так, если хромосома с генами AB в процессе кроссинговера обменяется участком с геном B с гомологичной хромосомой, чей участок содержит ген b, то могут получиться новые гаметы (Ab и, например, aB). Процент таких рекомбинантных гамет будет меньше, чем если бы гены находились в разных хромосомах. При этом вероятность кроссинговера зависит от удаленности генов на хромосоме: чем дальше, тем вероятность больше.

В чем сущность закона независимого наследования признаков?

Ответ или решение

Похожие вопросы

Кокер-спаниели при генотипе A-В- имеют черную окраску, при генотипе A-bb рыжую, при генотипе.

Чем отличаются процессы гаметогенеза в женском и мужском организме?

Сформулируйте определение понятия «популяция». Объясните, почему популяцию считают наименьшим.

Среди приведенных утверждений подчеркните правильные.

Глобальные экологические проблемы.

Какие культурные растения произошли из Южной Америки?

Что такое здоровый образ жизни?

Приведите 3-4 примера, показывающих приспособление различных растений к совместной жизни в

Универсальны ли законы Г. Менделя и применимы ли они к человеку?

Нарисуй любую пищевую цепь, доказывающую, что в природе нет вредных организмов.

Побег, у которого плохо различимы междоузлия, называется

Изучая развитие и смены экосистем, экологи используют.

Понравилась статья? Поделить с друзьями: